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Abstract
Software inspections are widely used for defect detection, and are capable of detecting defects early in
development. In order to avoid spending too much resource and to assure that the inspected product has the
demanded quality, a method to estimate product quality and inspection performance would be helpful. For
this purpose, capture-recapture methods have been suggested. In this paper, we explore the relation between
models underlying capture-recapture methods and inspection data. We have tested three hypotheses that
underlie commonly used capture-recapture methods: Inspectors find the same number of defects; Defects
are equally easy to detect; and, Inspectors find the same defects. We find no support for any of the three
hypotheses. The paper also contributes to research by describing methods for testing the hypotheses. It is
not wise to generalise from these results, as the sample analysed is small. Nevertheless, the results imply
that the underlying models, or assumptions, of commonly used capture-recapture methods are not generally
applicable to software engineering.

Introduction
Software plays an important role in today’s society. The high dependence on software has put focus on
software quality engineering. Customer satisfaction through good quality gives competitive advantage.
Further, lack of quality costs, especially if quality deficiencies remain undetected from early phases of
development. The lowest level of quality engineering is the detection of defects for the sole purpose of
correction. The second level is quality assurance, where product measurements is compared to standards so
as to assure that the shipped product is of the “right” quality. To assure is more demanding than to detect,
and requires models of product quality.

Software inspection is a family of widely used methods for defect detection, capable of detecting defects
early in development. In many organisations that develop software, inspections are an essential part of the
process. It has been recognised that inspections have a positive effect on product quality as well as the
efficiency of the development process. However, inspections demand time and resources. Preparations must
be made before the inspection meeting where many key persons will attend. This is a problem. In order to
avoid spending too much resource and to assure that the inspected product has the demanded quality, a
method to estimate the performance of the inspection would be helpful.

Several approaches based upon different statistical techniques have been evaluated in order to get better
basis to assess the above mentioned aspects. Briand et al. (1997) described three approaches:
1. Comparing inspection results with historical defect count.
2. Comparing inspection results with a baseline for defect density.
3. Estimating the number of residual defects using the current inspection results.
This paper addresses issues related to the third approach.

Lately, capture-recapture methods have gained increased attention in the software engineering community,
see e.g. Eick et al. (1992). The purpose of capture-recapture methods is to estimate the size of populations.



These methods have their origin in the biological research society, recent examples include Chao (1988),
Chao et al. (1992), and Pollock (1991). The methods have also been used outside of the biology area. For
example, Efron and Thisted (1976) estimated the number of words known by Shakespeare.
Adapting methods to new areas, i.e. software inspections, may lead to difficulties which one has to have in
mind. The most important aspect of adaptation is that of the underlying models. The different estimation
methods assume certain conditions on the data, i.e. specific models. If the model does not correspond to the
data, the method may give results that are either incorrect or easily misinterpreted.

From related work we have found that there sometimes is a lack of distinction between models and
methods, also known as estimators, or the issue is not mentioned altogether. The bulk of work on capture-
recapture in the field of software engineering has been concerned with methods, e.g. Vander Wiel and
Votta (1993), Wohlin et al. (1995), Briand et al. (1997), Miller 1998, and Wohlin and Runesson (1998).
Assumptions have been made, and sometimes claimed, with little support from literature or analyses, e.g.
Vander Wiel and Votta (1993) and Wohlin et al. (1995). There are few tests of consequences of broken
model assumptions on results, e.g. Vander Wiel and Votta (1993). However, analyses investigating how the
assumptions behind methods correspond to reality are missing.

In this paper we examine published inspection data sets in order to learn more about inspector capability,
defect detectability, and how these relate to each other. The importance of this work is that it provides a
basis for use of prediction methods, by validating, or invalidating, model assumptions demanded by
methods. In order to manage this, new variants of statistical tools have been used. The differences between
inspection data and that of other fields, e.g. a low density of information in the tables, increases the
difficulty of conducting tests on inspection data. One problem is that ordinary distributions cannot be used.
This forces the creation of specific distributions for each specific case.  These distributions depend on the
size of the table, the number of rows and columns, as well as the density of the table, i.e. the ratio of ones.
A number of extended computer simulations of Monte Carlo type and enumeration were conducted in order
to create these distributions.

Background
Generally, capture-recapture based estimation of population size begins with sampling of the population.
The results of sampling are used as parameters in an estimator function, which gives the size of the
population, if certain conditions are fulfilled. In previous published work in the field of software
engineering, the main focus was investigation of the performance of different methods, or estimators. In
fact, methods and models are often confused. In this paper, an estimator, or method, denotes the way in
which an estimate is computed. A model represents a set of assumptions on input data under which a
method has been designed to work.

The most common families of models are:
1. pij = p : the probability of an inspector having detected a defect is constant and does not vary with

inspector or defect.
2. pij = pi : the probability depends on the difficulty of the defect, which varies between defects, and all

inspectors have the same capability of detecting a specific defect.
3. pij = pj : the probability depends on the capability of the inspector, which varies between inspectors,

and all defects are equally difficult to detect for a given inspector.
4. pij = pi pj : the probability depends on the capability of the inspector as well as the difficulty of the

defect, which both vary.
5. pij = pij : the detection probability might be individual depending on both inspector and defect.

Miller (1998) gave additional assumptions that relate to the process of (re-)capturing.

The above mentioned models are implicitly used in estimators. The most common estimators are Jack-
knife, Maximum-likelihood, and the Chao estimator, of which there are several versions. The Jack-knife
estimator is based on model number two, Maximum-likelihood on number three, and Chao estimators exist
for numbers two to four.



Vander Wiel and Votta (1993) studied “the effects of broken [model] assumptions on” the Jack-knife and
Maximum-likelihood estimators. The Maximum-likelihood estimator was found to perform better than
Jack-knife, especially if defects were grouped to achieve homogenous detectability. Wohlin et al. (1995)
claimed that the assumptions of the Jack-knife method do not correspond to reality and rejected it in favour
of the Maximum-likelihood method. The claim was not supported by a test. They also evaluated a filtering
technique to improve estimates of residual defects. The new method was evaluated using data from an
experiment where a single document was inspected. Briand et al. (1997) examined the sensitivity of
methods with respect to the number of samples used, i.e. number of inspectors. They recommended that at
least four inspectors be used, and that the Jack-knife estimator was the best for four or five inspectors. The
Chao estimator with the same model as Jack-knife was comparable for five inspectors, but behaved badly
for four inspectors. The evaluation criticised by Miller (1998) with respect to choice of inspectors and
number of data points. Wohlin and Runesson (1998) proposed two new estimation methods based on
extrapolation of fitted curves. The methods are based on a number of assumptions that are not tested. The
methods were evaluated with inspection data from two experiments, where the choice of artefacts was
criticised by Miller (1998). Miller (1998) arrived roughly at the same conclusions as Briand et al. (1997).
However, Miller recommended Jack-knife for three to five inspectors and for six inspectors both Jack-knife
and the Chao estimator for model number four. In conclusion, there are no known examples in software
engineering literature where the viability of the models assumed by capture-recapture methods is tested.

Models and Tests
By using capture-recapture methods on inspection data we want to predict, or assess, the remaining number
of defects in the inspected document, the performance of the inspection, or both. To facilitate analysis of
empirical data from a certain perspective, models that faithfully represent the data are needed. These
models are the basis for analysis methods. That is, the “ mathematical model … relates the attributes to be
predicted to some other attributes that we can measure now. ” (Fenton and Pfleeger 1996)

A number of model assumptions have implicitly been made when a method has been chosen. The methods
are dependent on the underlying models that supposedly describe the data to be analysed. This is important
but often forgotten. In this section we will present ways to determine model characteristics of inspection
data. This gives a better basis for choosing or creating suitable estimation methods. By looking at published
results from a number of inspections some conclusions regarding the underlying models have been made.
We have also made a contribution in the methods to determine these models.

The type of defect-inspector table used throughout this paper is shown in Figure 1. The table represents the
defects found as r rows and inspectors that found the defects as c columns. Let nij be the contents of a cell
representing the detection of defect i by inspector j. If the defect on row i was detected by inspector j, nij is
one, otherwise nij is zero. The number of inspectors that detected defect i is the number of ones in row i, the
row sum, denoted ni.. The number of defects detected by inspector j is the number of ones in column j, the
column sum, denoted n.j. The total number of detections is denoted n...
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Figure 1. Graphical description of an inspection data matrix.

In the rest of this section we describe tests for analysing inspection data, mainly with respect to aspects that
are relevant to the most commonly used capture-recapture methods. Interesting aspects of inspection data
relate to inspectors, defects, and their relation.



Inspector Capability and Defect Detectability
The assumptions regarding the capabilities of inspectors are concerned with the number of defects detected
by each inspector. Intuition often suggests that inspectors have different capabilities but this has not yet
been tested, see e.g. Wohlin et al. (1995). The capability of inspectors is tested by comparing the number of
defects found by each inspector with the average number of defects detected.

A test statistic similar to the Chi-square test (Everitt 1992) is utilised, 
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arise when the expected values of row or column sums are too small. The Chi-square test is commonly
considered to work less than well for values below five. With respect to row sums, this criterion is not
fulfilled by any of the tables analysed in this paper. The expected values of column sums fulfil the criterion
for roughly half of the tables. Preferably, under the null hypothesis of equality, the statistic for an observed
table is compared with a reference distribution. Since the Chi-square distribution is not applicable, a
substitute distribution has to be constructed.

Enumeration was the approach chosen for creating the distribution of the Q-statistic. That is, in e.g.
analysing inspector capability, the set of column sums of a table is analysed. The total number of detected
defects, the number of 1:s in a table, are distributed in all unique ways over the columns. The Q-statistic for
each permutation is computed and its occurrence is weighted by its probability under the assumption of
homogeneity. The result is a reference distribution adapted to characteristics of the table. The p-value for
the Q-statistic of the observed table, Qo, is obtained from the distribution as ( )oQQPp >= , where the

variable Q belongs to the distribution.

Similarly to inspector capability, defect detectability is defined as the fraction of inspectors that found a
specific defect. That is, a defect found by many inspectors is said to have a higher degree of detectability.
Wohlin et al. (1995) recommended that defects be divided into two groups based on the number of
inspectors that found each defect. When only one inspector found a defect the defect was put in a low
detectability group. Defects found by more than one inspector were put in a high detectability group.
However, this reasoning hides the assumption that defects have different probability of detection. The test
for difference among defects is the same as for inspector but along the other dimension of the table.

Defects and Inspectors Combined
A third approach to test inspection data is to consider defect and inspector characteristics at the same time.
That is, the test helps determine if inspectors are equally good in finding different types of defects. Since
the cell values of the tables analysed are either one or zero, chi-square tests are not appropriate. An
alternative test statistic is proposed. The new test statistic is built up by a sum of the differences between
the inspectors based on every specific defect.

Let l and m be the identities of two inspectors. Let nij be one if defect i was detected by inspector j, and zero
otherwise. A matrix K is created where { } mlnnofnumberk imillm ≠>= where and

{ }0>= illl nofnumberk . A proposed test statistic is ∑∑ ∗
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The diagonal of K, llk , represents the number of defects found by each inspector. Values outside the

diagonal i.e. ijk  represents the number of defects found by inspector i but not by inspector j. That is, a big

number outside the diagonal indicates that one of the inspectors found many defects not found by the other.
The matrix is quadratic, but it is rarely symmetrical, as e.g. inspectors seldom find the same number of
defects.

The distribution of the T-statistic is not known, but needed in order to determine the meaning of a T-value.
Thus, the distributions of T for each table have to be generated. Due to problem size, enumeration is not an
option. Instead, Monte Carlo simulation is used. That is, the distribution of T for a given table is acquired
by computing the T-statistic for n randomly generated tables, with similar characteristics as the observed



table. The simulations are crucial to the reliability of the analysis, and so the bulk of work has been spent
on trying to achieve a simulation that represents the true probability distribution. Again, the rationale for
simulations is that the distribution of the test statistic is unknown.

Results
In this section we investigate characteristics of published inspection data sets and in the process we provide
ways of testing model assumptions. The data sets were mainly taken from Freimut (1997), where the
majority originates from experiments using NASA subjects. A data set from Wohlin et al. (1995) and one
from Myers (1978) were also used in some of the analyses. The results are used for accepting or rejecting
the hypotheses stated above. Three different hypotheses are tested.

Inspector homogeneity
For each table k the test-variable Qk is calculated. The value Qk is compared to an empirical distribution
constructed using enumeration, as described above. For this analysis, two data sets were not used due to
time and size complexity problems, as there were many combinations to enumerate.

Under the null hypothesis of homogeneity, the expected value of p is 0.5. A low p-value is the result of
large differences between the number of defects discovered by different inspectors. A single small p-value
supports rejection of the null hypothesis but is not enough to safely reject it.  By combining analyses of a
number of tables we get a greater body of evidence. Figure 2 shows the p-values for the 22 different data
tables tested. Under the null hypothesis the p-values would be evenly distributed between 0 and 1. This
does not seem to be the case. The conclusion is therefore that the null hypothesis is rejected. Thus, based on
this set of data, we can say that inspectors generally do not find the same number of defects, i.e. inspector
capability varies with inspectors.
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Figure 2. p-values for inspector homogeneity.

Defect homogeneity
Analysing the defect detectability in the same way as inspector capability shows that it can be concluded
that defects do not have equal detectability. The p-values for the 22 data sets shown in Figure 3 clearly
indicate a non-equal distribution. That is it cannot be said that the different defects generally have equal
detectability. For this analysis, two data sets were not used due to time and size complexity problems, as
there were many combinations to enumerate.
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Figure 3. p-values for defect homogeneity.

Another way of representing the p-values is with a scatter plot, shown in Figure 4. Here p-values for
inspector capability and defect detectability for 22 tables are plotted against each other. There are no real
outliers. That is, no table plots in the upper right quarter. The plot gives stronger support for rejection of the
null hypothesis for defect detectability than for inspector capability. That is, defects are more
heterogeneous than inspectors. Even though inspectors seem to be more homogeneous than defects, they
are predominantly heterogeneous.
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Figure 4. Scatter plot of defect and inspector homogeneity p-values.

Inspector and defect combined homogeneity
In this section, we analyse the relations between defects and inspectors. In Figure 5 the p-values from this
analysis is presented. The results stem from 10.000 simulations of 24 tables. As in the other cases it can
clearly be seen that the p-values are not evenly distributed between 0 and 1. A low p-value is the result of
large differences between inspectors; i.e. inspectors find different defects. The distribution of p-values is
skewed towards zero. In fact, 50 percent of the values are lower than 0.1 and about 85 percent are less than
0.5. This situation is highly unlikely under the assumption that inspectors find the same defects. The
implication is that there is no support for “inspector profiles”, i.e. groups of inspectors that find similar
subsets of the defect population. If groups of inspectors found largely the same defects p-values should be
skewed toward the right. It may be harsh to reject the concept of “inspector profile” based solely on this
analysis. However, analytical advocacy is no longer enough.



This is analysis differs from the test of inspector homogeneity above, where it was shown that different
inspectors find different number of defects.
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Figure 5. The p-values for combined inspector and defect homogeneity.

Conclusion and Discussion
In this paper we went back to the basics, that is, using the information from inspections to explore the
underlying models that are assumed to characterise inspection data. The road towards better methods and
correct use of existing methods will start from the most logical point, the distribution and properties of the
data.

We have tested three hypotheses occurring in capture-recapture work in the software engineering field:
1. Inspectors find the same number of defects.
2. Defects are equally easy to detect.
3. Inspectors find the same defects.

We find no support for any of the three hypotheses. These results imply that the underlying models, or
assumptions, of commonly used capture-recapture methods are not applicable to the software engineering
data analysed in this paper. Even though 24 data sets were analysed, 16 of these originate from NASA.
Thus, it is not wise to generalise from these results. However, the results suggest that it is wise to test
model assumptions. Testing model assumptions requires good data, which in turn requires good
instrumentation and collection procedures. We have instrumented the inspection process of an industry
partner, and are currently awaiting data to accumulate.

By exploring data from several inspections we are able to draw general conclusions about how the data is
formed. This includes measures of correlation between inspectors and between faults. Other aspects are the
distributions of inspectors’ performance and defect detectability. Naturally, it may not be possible to find a
single specific model that will explain all relationships between inspectors and defects. The data sets used
here, to estimate characteristics of product and inspection process, have only two parameters. It is not
unlikely that other product, process and resource attributes could increase the usefulness of estimators.
There may be important differences between instances of inspections, e.g. differing inspection rate, team
expertise, type of document, and organisational culture.

Even though universal models are few and far between, the goal is to find general models. It may be easier
to find methods to derive situation specific models. These methods can then be used together with local
inspection data to assure that a suitable estimation method is used. Still, it is questionable how the
information gained can be used. Does the estimate of defect content depend mainly on the product, the
measurement process, or both? If the inspection process is unstable, measurement noise may obscure



product attributes. For example, it is hard to determine if a high defect count is the result of a bad product, a
good inspection, or both. An accompanying metric is needed for normalisation.
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